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Abstract: in this paper we shall prove that any nontrivial solution of second and higher order complex linear differential 
equations has infinite order if the coefficients of them are entire functions and satisfy a certain conditions. Also we proved the 
above result for the special case of second order complex linear differential equation when the coefficients involved 
meromorphic functions and a nonconstant polynomial. 
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1. INTRODUCTION  
     The order of growth of solutions of the equation 
 ( )      ( ) 

(   )      ( ) 
    ( )            (1) 

is one of the aims in studying complex differential equations, 
where    (  )       (  )         are entire 
functions. For the second order case  
     ( )    ( )                                                            ( ) 
From [1, 2, 3], we know that every nontrivial solution of it 

has infinite order provided that 

i)    ( )   ( ) ; or ii)   ( )   ( )  
 

 
 or iii)   ( )  is 

a polynomial and  ( ) is a transcendental entire function. 

For the case of polynomial coefficients, a classical result due 

to Wittich [4] says: if    ( )         are entire 

functions, then all solutions of (1) are of infinite order if and 

only if all coefficients   ( ) are polynomials. Another result 

due to Frei [5] for (1) is: if    ( )      ( ) are 

transcendental coefficients while      ( )        ( ) are 

polynomials, then there can exist at most   linearly 

independent finite order solutions of (1). 
In our work, we shall consider the solution growth of Eqs. 
(1), (2) and the following special case of Eq. (2) 
     ( )  ( )    ( )                                                   ( ) 

where  ( )  ( ) are meromorphic functions and  ( ) is a 
nonconstant polynomial.  
We assume that the reader is familiar with the fundamental  
results and standard notations in Nevanlinna theory, see [6, 7, 
8] for more details. 
G. Gunderson in 1988 proved the following for the Eq. (2):  
Theorem 1.1 [2] Let  ( )  ( )    be an entire functions 
such that for real constants           where         
and       we have 
 
 | ( )|      *(   ( ))  | | +  

and  

 | ( )|     { ( )| | }   

as     in           . Then every non trivial 
solution   of Eq. (2) has infinite order. 
Cai Feng Yi1, Xu-Qiang Liu and Hong Yan Xu in 2013 
proved the following theorem: 

Theorem 1.2 [9] Let  ( ) be a nonconstant polynomial with 

      , let  ( ) be a meromorphic function with  ( )  

 . Suppose that  ( ) is a finite-order meromorphic function 

having an infinite deficient value,  ( ) has only finitely 

many Borel directions            (         ). Denote 

that     {                }          . Suppose that 

there exists    (          ) such that  (    )    for 

each angular domain   . Then every meromorphic 

solution     of equation (3) has infinite order with 

  (  )   ( ). 
 
2. PRELIMINARIES  
In what follows, we shall give some basic concepts related to 
the Nevanlinna theory of meromorphic functions. 
 
Definition 2.1 [6, 7, 8] Let   be a meromorphic function. The 
order of growth and lower order of growth of  , denoted by 
 ( ) and  ( ) respectively are defined by  

  ( )     
   

   
     (   )

     
  

and 

  ( )     
   

   
     (   )

     
  

respectively. If   is entire, then  (   ) can be replaced with 

     (   ), where   (   )     | |  | ( )| . 

Definition 2.2 [5, 16] The hyper-order   ( ) of a 
meromorphic function   is defined by   

   ( )     
   

   
         (   )

     
  

and 

   ( )     
   

   
             (   )

     
  

if   is entire. 

Definition 2.3 [10] Let  ( ) be a meromorphic function in 
the complex plane with  ( )   , (     ). A ray 
       , (      ) starting from the origin is called a 
Borel direction of order   of  ( ) if the following equality: 
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     ( (         )    )

    
    

holds for any real number     and every complex number 
    * + with at most two exceptions, where  (  
       )  *                | |   +. 
 

3. SOME NEEDED LEMMAS 
In this section, we shall introduce some results which will be 
useful in proving our results. 

Lemma 3.1 [11] Let  (   )  be a  pair  contains a finite 
order transcendental,  meromorphic function”      and 

   *(     ) (     )   (     )+  

denote a set of distinct integers order pairs satisfying 
         ,                . Let       be a constant. 
Then the following hold: 

 
i) There is     ,    )  with zero linear measure, such 

that, when     ,    )    , then a real constant 
      (  )     exists such that, for     with 
            | |     , and for each  (   )    , we 
have 

 |
 ( )( )

 ( )( )
|  | |(   )(     )                                                     ( ) 

 
ii) There is     (   )  with    (  )    , such that, 

for each   with  | |     ,   -  and, for each  (   )  
  , we have (4). 

 
 iii) There is     ,   )  with linear measure is finite, such 

that  
 

 |
  ( )( ) 

 ( )( )
|  | |(   )(   )                                                      ( ) 

 
for each   with | |     and  (   )    . 
 
Lemma 3.2 [11] Let (    ) denote a pair that consists of a 
transcendental meromorphic function  ( ) and a finite set 

   *(     ) (     )   (     )+  

of distinct pairs of integers that satisfy         for 
             . Let     and     be given real constants. 
Then the following three statements hold. 
 
i) There exists a set    ,    ) that has linear measure 

zero, and there exists a constant     that depends only 
on   and   such that if     ,    )   , then there is a 
constant      (  )    such that for all   satisfying 
         and | |      , and for all (   )     we 
have 

 |
 ( )( )

 ( )( )
|   (

 (    )

 
          (    ))

   

             ( ) 

In particular, if   ( ) has finite order  (  ), then (6) is 
replaced by: 

 |
 ( )( )

 ( )( )
|   | |(   )( ( )    )                                               ( ) 

ii) There exists a set    ,   ) that has finite logarithmic 
measure, and there exists a constant     that depends 
only on   and   such that for all   satisfying | |    
   ,   - and for all (   )     the inequality (6) holds. 
In particular, if   ( ) has finite order  (  ), then the 
inequality (7) holds. 

iii) There exists a set    ,   ) that has finite linear 
measure, and there exists a constant     that depends 
only on   and   such that for all   satisfying | |    
   and for all (   )   , we have 

 

 |
 ( )( )

 ( )( )
|    ( (    )        (    ))                         ( ) 

In particular, if   ( ) has finite order  (  ), then (8) is 
replaced by  

 |
 ( )( )

 ( )( )
|   | |(   )( ( )  )                                                   ( ) 

Lemma 3.3 [12] Suppose that  ( )     ( )  ( ), where 
 ( )  (    )     (     ) is a non-constant 
polynomial with       , and  ( ) is a meromorphic 
function with  ( )   . There exists a set    ,    ) that 
has linear measure zero such that for all   ,    )   , we 
have 
 
i) If  (   )   , where  (   )                 , 

then there is a constant      (  )    such that the 
inequality 

 | (    )|     *
 

 
 (   )  +   

holds for       

ii) If  (   )   , then there is a constant        (  )  
  such that the inequality 

 | (    )|     *
 

 
 (   )  +   

holds for        

Lemma 3.4 [13] Let  ( ) be an entire function with   

 ( )  
 

 
 and let  ( ) be a meromorphic function with 

 ( )     If  ( ) has a finite deficient value   with 

deficiency    (   )   , then for any given constant 

   , there exists a sequence    with     , such that 

the following two inequalities 
 

 | (   
  )|     {  

 ( )  }    ,    )  
 

  (  )    {  ,    )|   | (   
  )   |

 
  

 
 (    )}        

hold for all sufficiently large  , where    is a constant 

depending only on  ( )  ( ) and  . 
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Lemma 3.5 [14] Let  ( ) be an entire function with   
 ( )     . Then for every   ( ( )  ), there exists a set 

  ,   ) such that        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    
 ( )

 
 where 

  *  ,   )  ( )   ( )     +, 
 ( )     | |     | ( )|  
and 

  ( )     | |     | ( )|. 
 

4. MAIN RESULTS 

We generalize Theorem 1.1 to Eq. 1 as follows 
Theorem 4.1 Suppose that   ( )           ( )    
are entire functions such that for real constants           
where         and       we have  

 |  ( )|     {(   ( ))  | | }                                      (  ) 

and  

 |  ( )|     { ( )| | }                                  (  ) 

as     in           . Then every non trivial 
solution   of (1) has infinite order. 
 
Proof: Suppose that     is a solution of equation (1) where 
 ( )     . Set    ( ). Then from Lemma 3.1 (i), there 
exists a real constant    where         , such that 
 

 |
 ( )( )

 ( )
|   ( )| |                                                (  ) 

as     along        . Then from (11) and (12) we 
obtain that 
 

 |  ( )|  |
  ( )

 ( )
|  |    ( )| |

 (   )( )

 ( )
|   

 |  ( )| |
  ( )

 ( )
| 

   ( )| |   |    ( )| ( )| |(   )   
 |  ( )| ( )| |   

 
as     along        , this contradicts (10) and (11). 
 
We generalize Theorem 1.2 to be as follows in which the 
condition mentioned on   is in place of that in Theorem 1.2: 

 

Theorem 4.2 Let  ( ) be a nonconstant polynomial with 

      , let  ( ) be a meromorphic function with  ( )  

 . Let  ( ) be a meromorphic function with  ( )  
 

 
. 

Suppose that there exists an angular domain  (      )  
*                | |   + such that  (   )    

for some    (      ). Then every meromorphic 

solution     of Eq. (3) has infinite order with   (  )  
 ( ). 

 

Proof: Suppose that there exists a meromorphic solution 
    of Eq. (3) with  (  )   . We shall seek a 
contradiction. From Eq. (3), we have the following 
inequality: 

 | ( )|  |
   ( )

 ( )
|  | ( )  ( )| |

  ( )

 ( )
|                              (  ) 

By Lemma 3.2 (i), there exists a set    ,    ) of measure 
zero and      such that the following inequality: 

 |
 ( )( )

 ( )
|  | |  (  )                                                      (  ) 

holds for all   | |    with      and | |    . By 
Lemma 3.3, there exists a set    ,    ) of measure zero 
and      such that the following inequality: 

 | ( )  ( )|     {
 

 
 (   )  }                                         (  ) 

holds for all        satisfying       and   ,    )   . 
In the following, we shall consider two cases: 

Case1:    ( )  
 

 
 . Applying Lemma 3.4 to  ( ), then 

for any given constants    , there exists a sequence    with 

     as     such that  

 | (      )|     {  
 ( )  

}                                               (  ) 

holds for all sufficiently large  . 

On the other hand, since there exists    (      ) such that 

 (   )    by the hypotheses, we can get an interval 

,        -   (      ) such that (15) holds for all        

satisfying       and    ,        -   . Now, let   
       

 
. For each sufficiently large  , we can choose 

   ,        - (      ) such that (14), (15) and (16) hold 

for          . Let   
 ( )

 
. Hence, from (13)-(16), we get 

    {  
 
}    

  (  )
(      *

 

 
 (    )  

 +)                   (  ) 

Obviously, when   is sufficiently large, this is a 
contradiction. 

Case2:  ( )   . By Lemma 3.5 there exists a set    
,   ) with        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     such that for all   satisfying 
| |       , we have 

    | ( )|  
√ 

 
    (   )                                                 (  ) 

where  (   )     | |  | ( )| . It follows from Lemma 
3.5 that there exists a sequence    such that (16) and (18) 
hold. From (13), (14) and (16), we can obtain (17). Hence, 
from (17) and (18), we get 

  (   )
√ 
    

  (  )
(      *

 

 
 (    )  

 +)   

For sufficiently large  , we get a contradiction from (17). 
Hence   must has infinite order. 
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Next, we shall prove that   ( )   ( ). By using Lemma 
3.2 (i), there exist a set    ,    ) of measure zero and two 
constants     and        such that for all   satisfying 
| |         and         , the following inequality 
holds: 

 |
 ( )( )

 ( )
|    (    )         

Hence, for each sufficiently large  , we can choose    
 ,  

   
 
  -  (     ) such that (15),(16) and (18) hold for 

           . From (13), (15), (16) and (18), we get 

    {  
 ( )  

}    (     ) (      *
 

 
 (     )  

 +)   

Thus  

    
   

   
         (    )

    
  ( )     

As   can be arbitrary small, we have   (  )   ( ). The 
proof of the Theorem is completed. 

We generalize Theorem 1.1 by replacing the constants       
with two sets of real numbers *  + and *  +           as 
follows: 
Theorem 4.3 Let  ( )  ( )    be an entire functions and 
let         be a real constants. Suppose that there exists 
two sets of real numbers *  + and *  +           that 
satisfy                        
    (          )  and 
 
 | ( )|     {(   ( ))  | | }                                         (  ) 

and  

 | ( )|     { ( )| | }                                                         (  ) 

as     in           . Then every nontrivial 
solution   of Eq. (2) has infinite order. 
 
Proof: Suppose that     is a solution of Eq. (2) with 
   ( )     . From Lemma 3.1 (i), there exists a set 
  ,    ) with linear measure zero and a real constant    
where           , such that 

 |
   ( )

 ( )
|   ( )| |          |

  ( )

 ( )
|   ( )| |               (  ) 

as     along        . From Eq. (2) we obtain  
 

 | ( )|  |
   ( )

 ( )
|  | ( )| |

  ( )

 ( )
|                                       (  ) 

From (29), (21) and (22) we get a contradiction with Eq. (2). 
Therefore  ( )   . 
 
5. DISCUSSION AND CONCLUSION 
In our work, the solution growth of the second and higher 
order complex linear differential equations with entire 
functions as coefficients and special type of second order 
have been discussed using the Nevanlinna theory of 
meromorphic functions. It is seen that the Nevanlinna theory 
is a powerful tool in studying these equations. 
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